
Computers, Environment and Urban Systems 109 (2024) 102092

Available online 1 March 2024
0198-9715/© 2024 Elsevier Ltd. All rights reserved.

Intercity connectivity and urban innovation 

Xiaofan Liang a,*, César A. Hidalgo b,c, Pierre-Alexandre Balland d,e, Siqi Zheng f, 
Jianghao Wang g,h,* 

a Taubman College of Architecture and Urban Planning, University of Michigan, Ann Arbor, MI 48109, United States of America 
b Institute for Advanced Study in Toulouse, Toulouse School of Economics, and University of Toulouse Capitole, Toulouse 31000, France 
c Center of Collective Learning, ANITI, IRIT, University of Toulouse, and CIAS, Corvinus University of Budapest, Toulouse 31000, France 
d Department of Human Geography and Planning, Utrecht University, Utrecht 3584, Netherlands 
e Centre for European Policy Studies, Brussels 1000, Belgium 
f Sustainable Urbanization Lab, Department of Urban Studies and Planning, Massachusetts Institute of Technology, Boston, MA 02139, United States of America 
g The State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences & Natural Resources Research, Chinese Academy of 
Sciences, Beijing 100101, China 
h College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China   

A R T I C L E  I N F O   

Keywords: 
Innovation 
Intercity networks 
Connectivity 
Scaling 

A B S T R A C T   

Urban outputs, from economy to innovation, are known to grow as a power of a city’s population. But, since large 
cities tend to be central in transportation and communication networks, the effects attributed to city size may be 
confounded with those of intercity connectivity. Here, we map intercity networks for the world’s two largest 
economies (the United States and China) to explore whether a city’s position in the networks of communication, 
human mobility, and scientific collaboration explains variance in a city’s patenting activity that is unaccounted 
for by its population. We find evidence that models incorporating intercity connectivity outperform population- 
based models and exhibit stronger predictive power for patenting activity, particularly for technologies of more 
recent vintage (which we expect to be more complex or sophisticated). The effects of intercity connectivity are 
more robust in China, even after controlling for population, GDP, and education, but not in the United States 
once adjusted for GDP and education. This divergence suggests distinct urban network dynamics driving inno
vation in these regions. In China, models with social media and mobility networks explain more heterogeneity in 
the scaling of innovation, whereas in the United States, scientific collaboration plays a more significant role. 
These findings support the significance of a city’s position within the intercity network in shaping its success in 
innovative activities.   

1. Introduction 

In recent years, scholars have used the scaling framework to uncover 
several important relationships between city size and social and eco
nomic outcomes. In per capita terms, larger cities are more innovative, 
produce more output, and generate more employment (Bettencourt, 
2013; Bettencourt et al., 2007; Gomez-Lievano et al., 2016). They are 
also home to greater concentrations of complex and innovative eco
nomic activities (Audretsch and Feldman, 1996; Balland et al., 2020). 
Nevertheless, these agglomeration effects cannot be understood as a 
function of city size alone. Cities are not isolated entities but nodes in 
networks involving the exchange of goods, people, and ideas (Knox and 
Taylor, 1995; Neal, 2012; Taylor and Derudder, 2004). A more nuanced 

understanding of agglomeration effects therefore requires consideration 
of the network dimension. 

Research in recent decades has advanced our understanding of 
intercity connectivity and its impact on urban innovation. Building on 
Castell’s notion of “a space of flows” (Castells and Cardoso, 1996; Neal, 
2012; Taylor and Derudder, 2004), scholars have mapped intercity 
networks using data on commercial flights (Guimera et al., 2005), 
shipping (Kaluza et al., 2010), rail transport (Zhong et al., 2012), human 
mobility (Zhang et al., 2020), and firm mobility (Taylor and Derudder, 
2004). For example, cities such as London and New York have been 
identified as “Alpha” cities in the network of global firms (Beaverstock 
et al., 1999; Taylor et al., 2002), and Beijing as the quintessential center 
of mobility in China (Pan and Lai, 2019). These observations are 
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consistent with theories and studies that conceptualize cities as eco
nomic actors situated in social and institutional relationships to transfer 
resources, complement functions, and intervene in opportunities 
(Bathelt and Glückler, 2003; Bathelt and Glückler, 2011; Ullman, 1956). 
Many historical cities, such as Moscow, thrive because of their central 
influence and accessibility (i.e., closeness and betweenness centrality) 
(Pitts, 1978). For modern cities, knowledge is the most valuable 
resource. Here we find theories that emphasize the role of geographic 
proximity and knowledge spillovers (Glaeser et al., 1992; Hidalgo, 2015; 
Romer, 1990) and empirical studies that show the effect of social, 
spatial, and academic connections on firm growth and innovation. For 
example, Bailey et al (Bailey et al., 2018). found that social media 
connections between counties predicted the likelihood of patent cita
tions between counties, even after controlling for technology classes and 
geographic distance. Wang et al (Wang et al., 2020). found that high- 
speed rail development (i.e., mobility connectivity) positively affects 
the growth of knowledge-intensive industries in China. Hohberger et al 
(Hohberger et al., 2015). reported that scientific collaboration with 
universities and allies helps biotech firms stay close to the innovation 
center of the field. 

Studies integrating intercity connectivity into the scaling framework 
are just beginning to develop. Early discussions of networks in the 
scaling literature are limited to networks that are internal to cities, such 
as the transportation networks defined by a city’s infrastructure or the 
social networks that emerge in cities with multiple-story buildings 
(Bettencourt, 2013; Molinero and Thurner, 2021; Ribeiro et al., 2017), 
but have not yet incorporated intercity networks. For example, Betten
court (Bettencourt, 2013) models cities as space-filling fractals, with a 
dimension less than two because of the gaps generated by voids and 
empty spaces. Ribeiro et al. focus on the decay of human interactions 
with distance (Ribeiro et al., 2017). Whereas Molinero and Thurner 
continue this tradition with a model that explains scaling coefficients 
from a the geometric properties of a city (Molinero and Thurner, 2021). 
While this line of research has helped us improve our understanding of 
urban scaling phenomena, it focuses on within-city networks and could 
benefit from data about a city’s position in intercity networks. More 
recently, scholars have started to examine the impact of intercity con
nectivity on the scaling of urban performance. For example, Keuschnigg 
et al. found that cities’ local attractivity (i.e., migration of educated and 
talented people from smaller places), rather than their sizes, explains the 
much of Swedish cities’ superlinear scaling in wages (Keuschnigg et al., 
2019). The elasticity between wages and city sizes is further reduced 
when the scaling relationship controls for population composition (e.g., 
educational attainment, cognitive ability, and creative job characteris
tics etc.). The increasing returns to scale in urban wealth are also only 
observed in cities whose population and incoming commuters exceeding 
a well-defined threshold (Alves et al., 2021). Only cities in a dominant 
position within an urban network can expect robust trajectories of 
superlinear growth (Keuschnigg, 2019). Lei et al. reported that, as 
compared with population, interurban mobility interactions in China 
have greater impacts on cities’ exports, which depend on intercity net
works, than GDP, wages, or consumptions, which couple more closely 
with population (Lei et al., 2021). Bonaventura et al. found that node 
centrality in the U.S. workforce mobility network outperforms popula
tion in explaining city innovation performance (Bonaventura et al., 
2021). These studies further influence that population and intercity 
connectivity may affect the scaling of different urban outcomes. 

We found that existing attempts to integrate intercity connectivity in 
the scaling literature are limited by the scale (small), type (mobility 
networks only), and geography (one country) of the intercity networks 
involved and by a narrow focus on interpreting scaling exponents. 
Intercity network data are, by definition, quadratic in the number of 
cities. Thus, unlike data on simpler urban characteristics, such as pop
ulation, GDP, or education levels, they require dyadic data that are often 
unavailable in city-level statistics. Moreover, since each city may belong 
to multiple networks, we can expect each of these networks to have a 

different impact on specific technologies and industries. For example, 
transportation networks can be key for logistic-intensive industries 
while social networks may be more important for activities that involve 
the flow of ideas rather than. Intercity connectivity may also play a 
different role in developed versus developing urban contexts. For 
example, one study found that scaling exponents for population and 
number of incoming commuters are higher in developing countries, such 
as Brazil, than in the United States (Alves et al., 2021). Thus, untangling 
the effects of population and connectivity should consider the myriad of 
physical and digital networks connecting cities in different geographic 
contexts. Additionally, current scaling models with connectivity inputs 
focus primarily on interpreting scaling exponents, such as how a city’s 
position in an intercity network change different urban outputs’ returns 
to scale (Alves et al., 2021; Keuschnigg, 2019; Keuschnigg et al., 2019). 
Such approach assumes that intercity connectivity plays a similar role 
across cities and thus downplays the valuable heterogeneity in urban 
systems which can inform policy makers and planners about strategies 
and directions for improvements. 

Here, we combine the urban scaling framework with data on social 
media, mobility, and scientific collaboration networks for hundreds of 
cities in China and the U.S. to explore whether intercity networks 
contribute to our understanding of urban performance. Our analysis 
focuses on analyzing the proportion of the scaling variance (heteroge
neity in the scaling of patents, denoted as R (Bettencourt, 2013)) that 
can be explained by intercity connectivity, as opposed to traditional 
metrics such as population, GDP, and education. Our findings reveal that 
that connectivity can improve the explanatory power of population- 
based models for innovation (i.e., patents), increasing R2 by 9% (in 
the U.S.) to 26% (in China). We also found that the role of connectivity 
increases with the complexity (Hidalgo, 2021; Hidalgo and Hausmann, 
2009) of these activities, which we approximate using the date of 
introduction of a patent’s technologies (Balland et al., 2020). Notably, 
intercity connectivity plays a more robust role in explaining variance in 
China, even after controlling for population, GDP, and education, but its 
influence is weaker in the United States. This discrepancy may be 
attributed to the different types of urban networks driving innovation in 
these contexts. In China, models incorporating social media and 
mobility networks can better predict the number of more complex pat
ents, whereas in the United States, models with scientific collaboration 
networks are more predictive of complex patents. These findings help 
connect urban scaling and intercity network research by showing that 
intercity networks and population can combine to explain a city’s 
innovative output. They also underscore policy implications, suggesting 
that developing countries may benefit from prioritizing investments in 
infrastructure or initiatives aimed at enhancing digital and mobility 
connectivity, whereas developed countries may find value in fostering 
scientific collaborations to bolster innovation. 

2. Methods 

2.1. Independent variables: intercity connectivity 

We estimate the weighted degree-centrality of cities in the U.S. and 
China in three networks: social media connections, mobility, and co- 
publication using the formula below: 

CD(Pi) =
∑N

k=1
a(Pi,Pk)

where CD is the weighted degree centrality of a city Pi, which is calcu
lated as the total count of other cities Pk that Pi is connected to, weighted 
by the total connections between Pi and Pk. 

The social media and mobility networks in China and the mobility 
network in the U.S. are calculated as directed networks and the rest as 
undirected networks. Results with eigenvector centrality are reported in 
Supplementary Fig. S1 and Table S2. The spatial unit in China is a 
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municipal city (n = 338, excluding Hong Kong, Macau, and Taiwan), 
and the spatial unit in the U.S. is a Metropolitan Statistical Area (MSAs, 
n = 380). 

Social media connections. China’s social media network data were 
collected from Weibo (Chinese Twitter) in 2015. We collected a random 
sample of 16.6 million Weibo users and aggregated connections based 
on the city where each account was registered. The resulting network 
consists of 338 cities (nodes) connected by weights given by the number 
of people from one city following people from another city. U.S. social 
media network data comes from Facebook’s publicly available social 
connectedness index (SCI) (Bailey et al., 2018). We used the SCI version 
updated as of August 2020 on the county level. To protect proprietary 
information, the SCI index only reports the scaled values of total Face
book connections between two counties normalized by multiplying 
Facebook users in two counties. To derive the total Facebook connec
tions between two counties, we approximate the Facebook users in a 
county by multiplying the county population (from U.S. Census) by the 
percentage of Facebook users per county reported in the paper (Pick 
et al., 2019). We then aggregate the county-to-county connections on 
the MSA level. The derived Facebook connections between MSAs are not 
accurate on the absolute values. Yet, the relative strength between the 
connections is still accurate and thus will not impact our scaling 
interpretations. 

Human mobility. China’s mobility network data were collected from 
Tencent Map in 2016. Tencent Map tracks mobility through location- 
sharing services on mobile devices. This is a daily dataset containing 
the top ten origins and destinations, the flow volumes, and modes of 
transportation (air, train, car), for each prefecture city in China. We 
averaged the amounts of flows among 338 cities in 2016 to derive daily 
flows for mobility networks. U.S. mobility network data comes from a 
dataset organized by GeoDS Lab (Kang et al., 2020). The authors pro
vided estimations of total population flow between counties based on 
the SafeGraph data, a company that collects mobile phone users’ visit 
trajectories. We use the 2019 weekly flow data (12 months) aggregated 
to the MSA level. 

Intercity co-publication. Both China and the U.S.’s co-publication 
network data were collected from the Web of Science in 2017. We 
extracted the zip codes from 365,134 papers’ author affiliations and 
matched 281,243 with municipal cities (available for 293 cities). Simi
larly, we processed 592,880 papers in the U.S. and matched 397,370 
with MSAs (available for 357 MSAs). To construct the co-publication 
network, we count one or multiple authors from one city and collabo
rate with an author from another as one co-publication count between 
the two cities. The weights in the network represent the number of pa
pers co-authored by people between two cities. 

2.2. Socioeconomic variables: population, GDP, employment, education 

Population, GDP, and employment are classic predictor and response 
variables in traditional urban scaling research, representing the size of 
cities and the city outcomes. We collected China’s municipal cities’ 
urban area (registered) population, GDP, employment, and percentage 
of the population with a Bachelor’s Degree or above (i.e., approximated 
by the percentage of the population employed in information, finance, 
and research industries) from the China City Statistical Yearbook 2016. 
Since many Chinese metropolitan cities have a large floating population 
that is not counted in the registered population, we also reported results 
with resident population (i.e., registered and floating population in 
urban area) (see Supplementary Note 1, Fig. S4, S5, S7, S12, and 
Table S3). The same socioeconomic variables for U.S. MSAs in 2019 
were collected from the U.S. Bureau of Economic Analysis (see Supple
mentary Note 2). 

2.3. Dependent variable: patents 

We measure city outcomes in innovation through patents. For China, 

we collected total patent counts per city from China National Intellectual 
Property Administration (CNIPA) in 2017. We complement this data 
with patents by technological classes from PATSTAT, which extracts 
data from the European Patent Office (EPO). CNIPA data are more 
comprehensive, covering all patents filed for protection in China, while 
EPO data only covers Chinese patents filed for protection in Europe. 
Thus, we use CNIPA data to report the total number of patents in China 
and EPO data to analyze scaling outcomes by technology class. 

For the U.S., we download 2019 patent data from PatentViews. 
Patents are geolocated with inventors’ counties, and we aggregate the 
numbers on MSAs. Patents with multiple (e.g., n) inventors will have a 
weight (count) of 1/n. 

The complexity of patents is measured as the average number of 
years since the technology subclasses in a patent were introduced (i.e., 
more recent technological classes are considered to be more complex 
and/or sophisticated) (Balland et al., 2020) (see comparisons with 
another complexity metric in Supplementary Table S6). Raw patent data 
are grouped in CPC and USPC classification systems. We converted them 
to National Bureau of Economic Research (NBER) categories to leverage 
the existing complexity measures. 

As alternative measures for city outcomes, we also report scaling 
results for scientific publication by fields and industry sectors (see 
Supplementary Fig. S10, S11). 

2.4. Scaling models 

Urban scaling research focuses on how a city’s properties scale as a 
function of city size (Bettencourt et al., 2007). This is done by modeling 
a city’s output Y as a power law of population X. 

Y = AXβ 

Which, when log-transformed results in a linear model of the form: 

log(Y) = log(A)+ βlog(X)

Using lowercase letters for log-transformed variables, we obtain: 

modelpop : y = A+ βx 

The coefficient indicates whether the relationship between city size 
and the outcome is linear (β = 1), superlinear (concave) (β > 1), or 
sublinear (convex) (β < 1), pop represents total populations. 

Here we expand this model to include measures of a city’s connec
tivity k in physical and digital networks. That is, we use a model of the 
form instead: 

modelpop+networks : y = A+ βx+ γ1k1 + γ2k2 + γ3k3,

where k1, k2, k3 are measures of a city’s centrality in a network of social 
media, mobility connectivity, and academic collaborations, and γ1, γ2, 
and γ3 are their respective scaling coefficients. Variations of this model 
are used to examine the contribution of networks as a whole and by each 
type. 

We applied modelpop and modelpop+networks to three sets of city 
outputs — GDP, employment, and patents — and further breakdown 
patents by technological classes. Unlike previous scaling research, which 
focuses on scaling exponent, we focus on the scaling variance R2 to 
compare the explanatory power between modelpop and modelpop+net

works. Here, we refer to scaling variance as the enhanced model pre
dictability of patent count (R (Bettencourt, 2013)) when incorporating 
inputs such as intercity connectivity. We attribute the difference in the 
R2 between the models with and without connectivity as the contribu
tion of the connectivity variables after controlling for population. 
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3. Results 

3.1. The shape of intercity networks 

Fig. 1 visualizes three key inter-city networks: social media, human 
mobility, and scientific collaborations for the United States and China. 
First, social media and co-publication networks seem to be more 
centralized than the physical mobility network and tend to be domi
nated by hub cities. This may reflect the fact that digital connections and 
researchers tend to concentrate in a few cities, taking advantage of long- 
distance connections that are no more costly than shorter ones. In China, 
the social media and co-publication networks center around Beijing, the 
country’s cultural, political, and academic hub. In the United States, 
New York, and Boston play the role of Beijing in social media and sci
entific co-publication networks. Second, social media and co- 
publication networks in China and the U.S. involve connections 
among hubs (i.e., New York–Los Angeles, Boston–Chicago), whereas in 
comparison, mobility networks lack as many long-distance connections. 
As expected from a simple gravity model (Tinbergen, 1962), mobility 
networks involve clusters centered on large cities, such as New York and 
Los Angeles in the U.S. or Shanghai, Shenzhen, and Beijing in China. 
These network properties support the idea that each of these networks 
plays a different role (see results of other metrics and top cities in each 
network in Supplementary Fig. S1, S2). 

3.2. Models with connectivity inputs are better at predicting the number of 
patents 

Fig. 2 shows how the total number of patents scales with a city’s 
population and centrality using data from both China and the United 
States (see results of GDP and employment in Supplementary Fig. S3 and 
results of resident population for China in Supplementary Fig. S4). In all 
cases, we find a strong and positive correlation between population, 
connectivity, and city outcomes, as we should expect from the fact that 
population and connectivity are strongly correlated. Yet, we also find 
some meaningful differences. 

While population is certainly an accurate predictor of total GDP and 
employment, its ability to fully explain a city’s total number of patents is 
less clear. In China, population can only explain 56% of the variance in 
patents, considerably lower than the percentages observed between a 
city’s population and its employment or GDP (respectively, R2 = 0.65 
and R2 = 0.71). In the case of patents, the variance across cities corre
lates more strongly with a city’s connectivity (social media R2 = 0.76, 
mobility R2 = 0.70 co-publication R2 = 0.64) than population (R2 =

0.56). Data from the U.S. show a similar pattern: population explains 
96% and 98% of the variance in GDP and employment but only 69% in 
the total number of patents, which is lower than the 74% of variance 
explained using social media degree centrality. This finding hints at the 
fact that a city’s position in the intercity network may account for 
variance in innovative activities that is unexplained by population, 
consistent with prior work (Lei et al., 2021). 

We explore this idea further by comparing the result of predicting 
GDP and patents with five sets of inputs: population alone (M1), popu
lation with GDP and education (M2), networks alone (M3), population 
and networks (M4), and all-of-the-above (M5). The results are shown in 
Table 1. We find that while the model with population and network 
inputs (M4) contributes marginally over the model with population 
alone (M1) to explain GDP (from R2 = 0.71 to R2 = 0.85 for China; from 
R2 = 0.96 to R2 = 0.97 for the U.S.; see GDP results in Supplementary 
Table S1), it provides a better fit for the patent data (R2 = 0.81 for China; 
R2 = 0.78 for the U.S.; Both F-test p < 0.001). When compared with 
models with population alone (M1), models with intercity connectivity 
inputs (M4) improve explanatory power (R (Bettencourt, 2013)) by 9% 
and 26% for the U.S. and China respectively. In China, even with the 
control of GDP and education, the complete model (M5) still increases 
R2 by 10% as compared with the model with population, GDP, and 

education (M2) (F-test p < 0.001). 
In fact, in both U.S. and China, network models with and without 

population (M3 and M4) report similar R (Bettencourt, 2013), indicating 
that population and networks may behave as substitutes for each other. 
In addition, in China, all three network variables have statistically sig
nificant and positive effects on predicting the patents (M4), even after 
controlling for cities’ GDP and education (M5), confirming that each 
network has a unique contribution. This observation is also robust with 
resident population (see Supplementary Table S3). In the U.S., only 
scientific collaboration connectivity contributes to explaining patterns 
after controlling for MSAs’ GDP and education (M5), while the effects of 
social media and mobility networks are less clear. The model of popu
lation and networks (M4) actually performs worse than the model of 
population, GDP, and education (M2), indicating that networks are 
worse predictors than traditional socioeconomic indicators. Results 
using eigenvector centrality rather than degree centrality as the network 
measures are similar, except that the co-publication network loses its 
effect in China (see Supplementary Table S2). The difference between 
China and the U.S. again highlights the different roles that network 
connectivity may play in different economies. 

One way that connectivity may help explain the scaling variance of 
patents is that it helps cities produce more patents than they’re not-so- 
connected counterparts. Fig. 3 compares the residuals of the popula
tion scaling model between high-connectivity and low-connectivity 
cities of a similar population (respectively colored in orange and pur
ple) (see results with China’s resident population in Supplementary 
Fig. S5). Overall, we find that high-connectivity cities tend to be those 
that outperform in patenting activity in a population scaling model. The 
difference in China is more significant and consistent across population 
size but is still observed in the U.S. In China, the biggest mean and 
median difference in patents between high- and low-connectivity cities 
are observed at a population size of around 1–2 million (medium size), 
while for the U.S., big differences are observed in cities with a popula
tion of 10 K–30 K and 3–5 million (see t-tests for mean difference at 
Supplementary Table S4, S5). For example, Wenzhou, a city known for 
its entrepreneurial legacy (registered pop. 1.7 m, resident pop. 2.3 m) 
produces 45,385 patents in a year. In contrast, Guigang, a Chinese 
inland city in a low socioeconomic region with similar population 
(registered pop. 2 m, resident pop. 2 m), only produces 633 patents. 
Population cannot explain such differences without considering their 
differences in connectivity. Wenzhou has a high degree of centrality in 
social media and mobility networks: it is a hub for migrant workers in 
manufacturing industries. It has express trains connecting big metro
politans like Shanghai and Hangzhou as well as nearby manufacturing 
hubs such as Jinhua and Taizhou. Guigang, on the other hand, under
performs in all three networks. Similar contrasts can be found in U.S. 
cities, such as San Francisco-Oakland-Berkeley, CA, a well-known tech 
hub connected by numerous highways to the greater bay area and UC- 
Berkeley (pop. 4.7 m, patent 14 K), versus Riverside, which mainly 
has light-industry despite a strong mobility connection to the greater Los 
Angeles area (pop. 4.6 m, patent 4 K). 

After controlling for similar population, GDP, and education levels 
(see Fig. 3 with GDP and education controlled in Supplementary Fig. S6, 
S7 and matching analysis in Supplementary Fig. S8), our findings stand 
(though to a lesser extent) and are robust for China (esp. medium-size 
cities), but not very significant for the United States. For example, in 
China, Jiaxing (pop. 0.9 m, resident pop. 1.8 m, patent 18 K) is a tourist 
city in Zhejiang province and a manufacturing hub for printing equip
ment, textile, and chemical products, while Xining (pop. 1 m, resident 
pop. 1.5 m, patent 1 K) in Qinghai province, whose main industries are 
renewable energy and services, is ten times lower in patent counts. 
These two cities also have an equal level of GDP (97b) and proportion of 
population working in information, finance, and research industries 
(3.6% and 3.8%). Such disparity may be attributed to Jiaxing’s high 
connectivity: it has four times more social media followers and two 
times more mobility visits (yet only half of publication collaborations) 
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Fig. 1. Intercity networks in China and the United States. The networks of scientific co-authorship, human mobility, and social media friendships for China and the 
United States, using both a geographic layout and the network’s minimum spanning tree. See Appendix A for links to interactive visualization. 
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than Xining. In the United States, intercity networks support some cities’ 
innovation but not others. For example, Trenton-Princeton, NJ (pop. 0.4 
m, GDP 36b, college edu. 30%, patent 471), the capital city of New 
Jersey state and home to Princeton University, beats its less connected 
counterpart, Portland-South Portland, ME (pop. 0.5 m, GDP 33b, college 
edu. 30%, patent 94) where many bank headquarters and an oil port are 
located, with four times more patents. Trenton-Princeton is also nearly 
ten times higher in scientific collaboration connections than Portland- 
South Portland, ME, and 8% and 48% higher in social media and 
mobility connections, respectively. In contrast, Baltimore-Columbia- 
Towson, MD has a similar population, GDP, and education profiles as 
Denver-Aurora-Lakewood, CO (pop. 3 m, GDP 220b, and college edu. 
30%) and is 20% higher in mobility connections and three times higher 
in scientific collaborations, but produces 62% (about 700) fewer patents 
than Denver. 

We acknowledge that many other factors endogenous to high con
nectivity may also contribute to the disparity in cities’ patent counts, 
such as the presence of prestigious research universities, the agglomer
ation of STEM industries and inventors, and accessible geography. We 
found that many overperformers are coastal cities, cities adjacent to 

metropolitans, and tech clusters (e.g., San Jose and Shenzhen) (see the 
geographic distribution of high/low connectivity cities in Supplemen
tary Fig. S9). In contrast, small-to-medium cities whose economy de
pends on tourism may also have exceptional connectivity, especially in 
mobility, but produce few patents. Though we cannot isolate these 
factors’ effects from those of connectivity, they reveal the interactions 
between connectivity and local conditions. 

3.3. Models with connectivity inputs are better at predicting more complex 
patents 

Fig. 3 shows that well-connected cities with STEM industries tend to 
have an edge on patent production and vice versa. We explore this point 
further by looking at scaling variance across patents of different vintages 
(patents making claims over technologies that appeared for the first time 
in a given year in the patent classification system). Figs. 4a and 4c show 
that, in China and U.S., models with population and network inputs (i.e., 
modelpop+networks) show higher scaling R2 than models with population 
alone (i.e., modelpop). As the complexity of patents increases, con
nectivity’s explanatory power and its advantage over the population 

Fig. 2. The scaling results of population or degree centrality in the three networks against total patents. a, China and b, the United States. Only cities that have values 
in the corresponding predictor and outcome variable are shown in each graphic. 

Table 1 
OLS regression results of each variable’s coefficient estimate and its statistical significance.  

OLS Regression: Socioeconomic Indicators and Connectivity versus Patents  

China: Patents (log10) U.S.: Patents (log10) 

Predictors M1: Est. M2: Est M3: Est. M4: Est. M5: Est. M1: Est. M2: Est M3: Est. M4: Est. M5: Est. 

Pop. (log10) 1.38*** 0.40**  0.15 − 0.16 1.38*** 0.22  0.04 − 0.21 
GDP (log10)  0.74***   0.33***  0.84***   0.86*** 
Pct w. Bachelor’s (%)  0.07***   − 0.04*  0.05***   0.04*** 
SM CD (log10)   0.59*** 0.55*** 0.48***   0.89 *** 0.86 *** 0.17 
Mob CD (log10)   0.46*** 0.43*** 0.50***   0.18 0.17 0.19 
Pub CD (log10)   0.16*** 0.14*** 0.12**   0.20*** 0.20*** 0.08*** 
Observations 275 275 275 275 275 366 366 366 366 366 
R2 / R2 adjusted 0.55 0.72 0.80 0.81 0.82 0.69 0.83 0.78 0.78 0.84 

Note: population alone (M1), population, GDP, and education (M2), networks alone (M3), population and networks (M4), and all-in-one (M5). Only cities that have 
values in all predictors are included. * p < 0.05 ** p < 0.01 *** p < 0.001. 
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also increases, indicating that connectivity is a stronger predictor than 
population at predicting the number complex patents. For example, in 
China, the population is equivalent at predicting the number of patents 
in Communication versus Furniture and House Fixtures (11%), even 
though the former is more complex than the latter. With the addition of 
connectivity, the model can capture up to 64% of variances in 
Communication patents, which strongly signals that intercity connec
tions contribute to or are affected by this type of innovation. Other fields 
that connectivity contributes the most to reduce variance include 
Computer Hardware & Software (47% increase in R (Bettencourt, 
2013)), and Optics (44% increase in R (Bettencourt, 2013)). In the U.S., 

the addition of networks improves the scaling R2 of patents in Measuring 
& Testing by 9%, Computer Hardware & Software by 8%, and 
Biotechnology by 7%. We also observed a similar pattern with industry 
and publication breakdown and with resident population in China (see 
Supplementary Fig. S10, S11, and S12). 

Figs. 4b and 4d further examine the findings by looking at how each 
network may reduce scaling variance. We found that the overall pattern 
persists using any network as input, but the ability to explain more 
complex patterns is more explicit with the social media and mobility 
networks in China while more explicit with the co-publication network 
in the United States. 

Fig. 3. Boxplots of scaling residuals for cities grouped by high/low connectivity and equal population intervals in a) China and b) U.S. The Y axis is the residuals of 
patent scaling against population, which is a transformation of Fig. 2. The boxplots show the range between the 1st and 3rd quantile, the median, and the mean 
(black) for high/low connectivity cities. The inset maps show high/low connectivity cities at each population interval. Orange dots are cities with high connectivity, 
defined as having a degree-centrality above the 3rd quantile in a population interval. Purple dots are cities with low connectivity, defined below the 1st quantile 
(purple). Grey dots are cities with connectivity between 1st and 3rd quantile. The median splits population intervals with less than five dots. Small-to-medium size 
cities whose economy depends on tourism are removed. Cities labeled are examples with a similar population but the distinct outcome in patents. 
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4. Discussion 

This paper attempted to untangle the role of population and intercity 
connectivity on city outcomes. We found that intercity connectivity 
sometimes explains the scaling variance of innovation (patents) better 
than population, but not the scaling variance of GDP and total 

employment. By observing outliers, we found that cities with high 
connectivity tend to outperform similar-sized cities with lower con
nectivity. This supports the idea that, in addition to population 
agglomeration effects, intercity connectivity may contribute to 
explaining variance in cities’ innovation outcomes. We also found that 
intercity connectivity is a stronger predictor for more complex patents (i. 

Fig. 4. Comparing Scaling R2 of modelpop and modelpop+networks by patent fields. a, China c, U.S. The Scaling R2 is further broken down using each independent 
variable in the model to examine each of its contribution in China (b) and U.S. (d). Small-to-medium size cities whose economy depends on tourism are removed. 
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e., patents of more recent vintage) whose production benefits the most 
from the flows of knowledge and information. Yet, these findings seem 
to hold stronger for medium-sized cities in China and are not significant 
after controlling for GDP and education in the U.S. 

Should we expect cities in China and the United States to be impacted 
differently by connectivity? One possibility could be that networks in 
China and the U.S. play different roles. China has excellent communi
cation (e.g., 5G technology) and transportation (e.g., high-speed rails) 
infrastructures which could enhance the role of networks in China 
compared to the United States. This infrastructure, combined with the 
fact that China has most of its population concentrated on the east, and 
within a single time zone (while the U.S. has two far-away coasts), could 
mean that China operates more as a single unit and the U.S. more as a 
collection of regional units (with the Northeast corridor, the Midwest, 
Texas, and the West Coast, acting more independently). In the U.S., 
patent innovation correlates strongly with intercity scientific collabo
rations, suggesting a key role for universities. These universities, 
coupled with a long-term sorting of industries and policy incentives, 
have enabled cities in tech clusters such as Silicon Valley (San Francisco 
and San Jose) or Research Triangle (Raleigh-Cary and Durham-Chapel 
Hill) to overperform on patent production. 

Our findings suggest that intercity connectivity not just affects urban 
scaling by attracting educated and talented laborers to large metropol
itans (selection effect) (Keuschnigg et al., 2019); they also suggest 
connectivity contributes to urban innovation via social media influence, 
population mobility, and knowledge exchange (academic collabora
tion), even after we take into account the effects of city size, GDP, and 
education in China. These mechanisms correlate with population 
composition but have nuanced differences. For example, highly con
nected metropolitan cities in China tend to have a large floating popu
lation (or migrant workers) among their residents. This population is not 
highly educated and mostly works in manufacturing industries, but ac
counts for much of the population mobility and social media connec
tions in China. We observed that some cities (e.g., Dongguan, a city 
known as the World’s Factory in China) stand out less in innovation 
when we used resident population (including floating population) 
instead of registered population as its measure for city size, indicating 
that floating population of these cities may contribute to urban inno
vation. Yet, intercity connectivity still explains innovation differences in 
many other Chinese cities with matching resident population (and other 
socioeconomic variables), suggesting that intercity connectivity can 
accelerate innovation through other means beyond endogenous popu
lation composition. 

Our study, however, has important limitations. First, we modeled 
population, intercity connectivity, and city outcomes in a simple linear 
scaling model, which could be expanded to include other variables and 
interaction terms. For example, intercity connectivity may help cities 
“borrow population” from their connected partners (Meijers et al., 2016) 
and thus may better be considered as the population’s exponent or co
efficient rather than an independent term. Second, we noted that very 
few cities excel or fall behind in all three networks (20% in China and 
7% in the U.S.). We found mixed evidence on whether improving a city’s 
position in one network would improve its patent counts more than 
others (see Supplementary Fig. S13). Future studies can investigate how 
a city’s mismatched positions in different networks are associated with 
its innovation and industry compositions. Third, we observed some 
preliminary differences in the role of intercity connectivity in devel
oping (i.e., China) vs. developed (i.e., U.S.) countries. Still, more 
research is needed to examine how the patterns may be generalized to 
countries with different levels of development and local contexts and 
what causes the difference. Lastly, we provide robust correlational evi
dence but no causal evidence. In fact, intercity connectivity could be 
endogenous to innovation, since innovation could make a city more 
attractive increasing connections in social media, transportation, and 
mobility networks. Isolating the causal effects of connectivity on inno
vation is a difficult but important challenge for future research. 

Moreover, we did not separate the effects of industry compositions, 
geography, and local conditions, which are endogenous to connectivity. 
Qualitative approaches and case studies can complement our work to 
reveal how connectivity may impact innovation. 

Our findings provide a first step connecting the urban scaling liter
ature with intercity networks. This question is particularly of interest in 
a post-COVID world, as the pandemic has shifted the geography of some 
knowledge-intensive work (e.g., remote software developers). For 
example, the finding that small-to-medium size cities can better leverage 
their connectivity may be consistent with the post-COVID trend of 
people moving out of dense metropolitan areas to work-from-home lo
cations (Ramani and Bloom, 2021). This suggests that future cities that 
wish to become more competitive in innovation may borrow lessons 
from their more connected counterparts. Different networks also imply 
different kinds of policy interventions that local governments can enact 
to help the cities grow. For example, attracting high-impact industry 
leaders, developing physical infrastructure between cities such as road, 
train, and air networks, and elevating the prestige of local universities 
may correspond to better positions in social media, mobility, and sci
entific collaboration networks. Our research opens a new pathway for 
policymakers to rethink their strategies to actively improve their posi
tions in one or more networks to uplift their cities’ innovative outcomes 
(Balland and Boschma, 2021). 

Code availability 

The code used in this paper is available at https://github.com/xia 
ofanliang/intercity_connectivity. 
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